cs.AI updates on arXiv.org 07月24日 13:31
SIA: Enhancing Safety via Intent Awareness for Vision-Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出SIA,一种无需训练的提示工程框架,用于检测和缓解多模态输入中的有害意图,通过实验证明在多个安全基准上实现了显著的安全改进。

arXiv:2507.16856v1 Announce Type: cross Abstract: As vision-language models (VLMs) are increasingly deployed in real-world applications, new safety risks arise from the subtle interplay between images and text. In particular, seemingly innocuous inputs can combine to reveal harmful intent, leading to unsafe model responses. Despite increasing attention to multimodal safety, previous approaches based on post hoc filtering or static refusal prompts struggle to detect such latent risks, especially when harmfulness emerges only from the combination of inputs. We propose SIA (Safety via Intent Awareness), a training-free prompt engineering framework that proactively detects and mitigates harmful intent in multimodal inputs. SIA employs a three-stage reasoning process: (1) visual abstraction via captioning, (2) intent inference through few-shot chain-of-thought prompting, and (3) intent-conditioned response refinement. Rather than relying on predefined rules or classifiers, SIA dynamically adapts to the implicit intent inferred from the image-text pair. Through extensive experiments on safety-critical benchmarks including SIUO, MM-SafetyBench, and HoliSafe, we demonstrate that SIA achieves substantial safety improvements, outperforming prior methods. Although SIA shows a minor reduction in general reasoning accuracy on MMStar, the corresponding safety gains highlight the value of intent-aware reasoning in aligning VLMs with human-centric values.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SIA 多模态安全 意图感知 VLMs 安全框架
相关文章