cs.AI updates on arXiv.org 07月23日 12:03
Rethinking LLM-Based RTL Code Optimization Via Timing Logic Metamorphosis
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出基于LLM的RTL代码优化方法,通过实证研究评估其在处理复杂时序逻辑方面的效果,并对比分析其与现有编译器方法的性能。

arXiv:2507.16808v1 Announce Type: cross Abstract: Register Transfer Level(RTL) code optimization is crucial for achieving high performance and low power consumption in digital circuit design. However, traditional optimization methods often rely on manual tuning and heuristics, which can be time-consuming and error-prone. Recent studies proposed to leverage Large Language Models(LLMs) to assist in RTL code optimization. LLMs can generate optimized code snippets based on natural language descriptions, potentially speeding up the optimization process. However, existing approaches have not thoroughly evaluated the effectiveness of LLM-Based code optimization methods for RTL code with complex timing logic. To address this gap, we conducted a comprehensive empirical investigation to assess the capability of LLM-Based RTL code optimization methods in handling RTL code with complex timing logic. In this study, we first propose a new benchmark for RTL optimization evaluation. It comprises four subsets, each corresponding to a specific area of RTL code optimization. Then we introduce a method based on metamorphosis to systematically evaluate the effectiveness of LLM-Based RTL code optimization methods.Our key insight is that the optimization effectiveness should remain consistent for semantically equivalent but more complex code. After intensive experiments, we revealed several key findings. (1) LLM-Based RTL optimization methods can effectively optimize logic operations and outperform existing compiler-based methods. (2) LLM-Based RTL optimization methods do not perform better than existing compiler-based methods on RTL code with complex timing logic, particularly in timing control flow optimization and clock domain optimization. This is primarily attributed to the challenges LLMs face in understanding timing logic in RTL code. Based on these findings, we provide insights for further research in leveraging LLMs for RTL code optimization.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM RTL代码优化 时序逻辑 编译器方法 实证研究
相关文章