cs.AI updates on arXiv.org 07月23日 12:03
METER: Multi-modal Evidence-based Thinking and Explainable Reasoning -- Algorithm and Benchmark
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章介绍了一种名为METER的跨模态伪造检测统一基准,旨在解决现有检测方法在伪造检测和解释方面的局限性,提供更全面、可解释的伪造检测。

arXiv:2507.16206v1 Announce Type: cross Abstract: With the rapid advancement of generative AI, synthetic content across images, videos, and audio has become increasingly realistic, amplifying the risk of misinformation. Existing detection approaches predominantly focus on binary classification while lacking detailed and interpretable explanations of forgeries, which limits their applicability in safety-critical scenarios. Moreover, current methods often treat each modality separately, without a unified benchmark for cross-modal forgery detection and interpretation. To address these challenges, we introduce METER, a unified, multi-modal benchmark for interpretable forgery detection spanning images, videos, audio, and audio-visual content. Our dataset comprises four tracks, each requiring not only real-vs-fake classification but also evidence-chain-based explanations, including spatio-temporal localization, textual rationales, and forgery type tracing. Compared to prior benchmarks, METER offers broader modality coverage and richer interpretability metrics such as spatial/temporal IoU, multi-class tracing, and evidence consistency. We further propose a human-aligned, three-stage Chain-of-Thought (CoT) training strategy combining SFT, DPO, and a novel GRPO stage that integrates a human-aligned evaluator with CoT reasoning. We hope METER will serve as a standardized foundation for advancing generalizable and interpretable forgery detection in the era of generative media.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

METER 伪造检测 跨模态 统一基准
相关文章