cs.AI updates on arXiv.org 07月23日 12:03
A Generative Model for Disentangling Galaxy Photometric Parameters
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于条件自编码器(CAE)的星系形态分析方法,通过模拟星系图像进行训练,实现了对星系形态特征的准确恢复和图像重建,为大规模星系形态分析提供了一种高效、准确的新方法。

arXiv:2507.15898v1 Announce Type: cross Abstract: Ongoing and future photometric surveys will produce unprecedented volumes of galaxy images, necessitating robust, efficient methods for deriving galaxy morphological parameters at scale. Traditional approaches, such as parametric light-profile fitting, offer valuable insights but become computationally prohibitive when applied to billions of sources. In this work, we propose a Conditional AutoEncoder (CAE) framework to simultaneously model and characterize galaxy morphology. Our CAE is trained on a suite of realistic mock galaxy images generated via GalSim, encompassing a broad range of galaxy types, photometric parameters (e.g., flux, half-light radius, Sersic index, ellipticity), and observational conditions. By encoding each galaxy image into a low-dimensional latent representation conditioned on key parameters, our model effectively recovers these morphological features in a disentangled manner, while also reconstructing the original image. The results demonstrate that the CAE approach can accurately and efficiently infer complex structural properties, offering a powerful alternative to existing methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

CAE 星系形态 图像分析 自编码器 星系模拟
相关文章