cs.AI updates on arXiv.org 07月23日 12:03
RDMA: Cost Effective Agent-Driven Rare Disease Discovery within Electronic Health Record Systems
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章介绍了RDMA框架,用于从电子健康记录中挖掘罕见病信息,有效处理临床缩写、识别隐性疾病模式,降低隐私风险,提高诊断效率。

arXiv:2507.15867v1 Announce Type: cross Abstract: Rare diseases affect 1 in 10 Americans, yet standard ICD coding systems fail to capture these conditions in electronic health records (EHR), leaving crucial information buried in clinical notes. Current approaches struggle with medical abbreviations, miss implicit disease mentions, raise privacy concerns with cloud processing, and lack clinical reasoning abilities. We present Rare Disease Mining Agents (RDMA), a framework that mirrors how medical experts identify rare disease patterns in EHR. RDMA connects scattered clinical observations that together suggest specific rare conditions. By handling clinical abbreviations, recognizing implicit disease patterns, and applying contextual reasoning locally on standard hardware, RDMA reduces privacy risks while improving F1 performance by upwards of 30\% and decreasing inferences costs 10-fold. This approach helps clinicians avoid the privacy risk of using cloud services while accessing key rare disease information from EHR systems, supporting earlier diagnosis for rare disease patients. Available at https://github.com/jhnwu3/RDMA.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

罕见病 电子健康记录 信息挖掘
相关文章