cs.AI updates on arXiv.org 07月23日 12:03
Adaptive Inventory Strategies using Deep Reinforcement Learning for Dynamic Agri-Food Supply Chains
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文针对农业产品库存管理难题,提出基于深度强化学习的优化策略,以应对需求及提前期的不确定性,提升供应链整体利润。

arXiv:2507.16670v1 Announce Type: new Abstract: Agricultural products are often subject to seasonal fluctuations in production and demand. Predicting and managing inventory levels in response to these variations can be challenging, leading to either excess inventory or stockouts. Additionally, the coordination among stakeholders at various level of food supply chain is not considered in the existing body of literature. To bridge these research gaps, this study focuses on inventory management of agri-food products under demand and lead time uncertainties. By implementing effective inventory replenishment policy results in maximize the overall profit throughout the supply chain. However, the complexity of the problem increases due to these uncertainties and shelf-life of the product, that makes challenging to implement traditional approaches to generate optimal set of solutions. Thus, the current study propose a novel Deep Reinforcement Learning (DRL) algorithm that combines the benefits of both value- and policy-based DRL approaches for inventory optimization under uncertainties. The proposed algorithm can incentivize collaboration among stakeholders by aligning their interests and objectives through shared optimization goal of maximizing profitability along the agri-food supply chain while considering perishability, and uncertainty simultaneously. By selecting optimal order quantities with continuous action space, the proposed algorithm effectively addresses the inventory optimization challenges. To rigorously evaluate this algorithm, the empirical data from fresh agricultural products supply chain inventory is considered. Experimental results corroborate the improved performance of the proposed inventory replenishment policy under stochastic demand patterns and lead time scenarios. The research findings hold managerial implications for policymakers to manage the inventory of agricultural products more effectively under uncertainty.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度强化学习 库存管理 供应链优化
相关文章