cs.AI updates on arXiv.org 07月23日 12:03
Canonical Representations of Markovian Structural Causal Models: A Framework for Counterfactual Reasoning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种在Pearl的因果框架下表示反事实的模型,通过随机过程概率分布和规范化程序,实现反事实信念的正规化和实施,为因果推理提供新的方法。

arXiv:2507.16370v1 Announce Type: new Abstract: Counterfactual reasoning aims at answering contrary-to-fact questions like ''Would have Alice recovered had she taken aspirin?'' and corresponds to the most fine-grained layer of causation. Critically, while many counterfactual statements cannot be falsified -- even by randomized experiments -- they underpin fundamental concepts like individual-wise fairness. Therefore, providing models to formalize and implement counterfactual beliefs remains a fundamental scientific problem. In the Markovian setting of Pearl's causal framework, we propose an alternative approach to structural causal models to represent counterfactuals compatible with a given causal graphical model. More precisely, we introduce counterfactual models, also called canonical representations of structural causal models. They enable analysts to choose a counterfactual conception via random-process probability distributions with preassigned marginals and characterize the counterfactual equivalence class of structural causal models. Then, we present a normalization procedure to describe and implement various counterfactual conceptions. Compared to structural causal models, it allows to specify many counterfactual conceptions without altering the observational and interventional constraints. Moreover, the content of the model corresponding to the counterfactual layer does not need to be estimated; only to make a choice. Finally, we illustrate the specific role of counterfactuals in causality and the benefits of our approach on theoretical and numerical examples.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

因果框架 反事实推理 结构因果模型
相关文章