cs.AI updates on arXiv.org 前天 12:11
Causality in the human niche: lessons for machine learning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了人类在因果关系认知方面的独特优势,以及如何将这些优势应用于机器学习领域。文章指出,人类通过因果关系来理解世界、进行有效学习和泛化,而现有的机器学习系统在这方面存在不足。作者认为,为了构建更有效、可解释的AI,需要借鉴人类的因果认知能力,并深入研究人类所处的“社会、自主、目标导向”环境下的因果关系。文章重点关注了人类如何通过类比等方式,在不同类型的物体之间进行因果推理,并提出将这些认知机制融入机器学习系统的可能性。

🧠 人类通过因果关系理解世界:文章强调了人类利用因果关系来解释周围世界,并在新领域进行有效学习和泛化的能力,这是当前机器学习系统所缺乏的。

💡 结构因果模型(SCM)的局限性:虽然SCM在因果关系研究中取得了重要进展,但它未能捕捉人类因果认知的某些关键方面,特别是在人类擅长的领域,例如日常物体之间的因果类比。

🏘️ 人类所处的“人类环境”中的因果关系:文章认为,人类在社会、自主、目标导向的环境中,因果关系具有独特的特性。例如,人类能够通过类比,将对一种物体(如杯子)的知识推广到另一种相关物体(如碗)。

🤝 促进机器学习与因果关系的结合:文章希望未来的研究能够更好地理解人类的因果认知特性及其在人类环境中的适应性,从而在机器学习中引入更类似人类的归纳偏见,构建更强大、可控和可解释的系统。

arXiv:2506.13803v1 Announce Type: new Abstract: Humans interpret the world around them in terms of cause and effect and communicate their understanding of the world to each other in causal terms. These causal aspects of human cognition are thought to underlie humans' ability to generalize and learn efficiently in new domains, an area where current machine learning systems are weak. Building human-like causal competency into machine learning systems may facilitate the construction of effective and interpretable AI. Indeed, the machine learning community has been importing ideas on causality formalized by the Structural Causal Model (SCM) framework, which provides a rigorous formal language for many aspects of causality and has led to significant advances. However, the SCM framework fails to capture some salient aspects of human causal cognition and has likewise not yet led to advances in machine learning in certain critical areas where humans excel. We contend that the problem of causality in the ``human niche'' -- for a social, autonomous, and goal-driven agent sensing and acting in the world in which humans live -- is quite different from the kind of causality captured by SCMs. For example, everyday objects come in similar types that have similar causal properties, and so humans readily generalize knowledge of one type of object (cups) to another related type (bowls) by drawing causal analogies between objects with similar properties, but such analogies are at best awkward to express in SCMs. We explore how such causal capabilities are adaptive in, and motivated by, the human niche. By better appreciating properties of human causal cognition and, crucially, how those properties are adaptive in the niche in which humans live, we hope that future work at the intersection of machine learning and causality will leverage more human-like inductive biases to create more capable, controllable, and interpretable systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

因果关系 机器学习 人类认知 结构因果模型 AI
相关文章