cs.AI updates on arXiv.org 07月22日 12:44
Understanding the Design Decisions of Retrieval-Augmented Generation Systems
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出对RAG部署决策的全面研究,揭示RAG成功的关键工程权衡,并分析不同任务和模型特征下的知识整合效果。

arXiv:2411.19463v2 Announce Type: replace-cross Abstract: Retrieval-Augmented Generation (RAG) has emerged as a critical technique for enhancing large language model (LLM) capabilities. However, practitioners face significant challenges when making RAG deployment decisions. While existing research prioritizes algorithmic innovations, a systematic gap persists in understanding fundamental engineering trade-offs that determine RAG success. We present the first comprehensive study of three universal RAG deployment decisions: whether to deploy RAG, how much information to retrieve, and how to integrate retrieved knowledge effectively. Through systematic experiments across three LLMs and six datasets spanning question answering and code generation tasks, we reveal critical insights: (1) RAG deployment must be highly selective, with variable recall thresholds and failure modes affecting up to 12.6\% of samples even with perfect documents. (2) Optimal retrieval volume exhibits task-dependent behavior QA tasks show universal patterns (5-10 documents optimal) while code generation requires scenario-specific optimization. (3) Knowledge integration effectiveness depends on task and model characteristics, with code generation benefiting significantly from prompting methods while question answering shows minimal improvement. These findings demonstrate that universal RAG strategies prove inadequate. Effective RAG systems require context-aware design decisions based on task characteristics and model capabilities. Our analysis provides evidence-based guidance for practitioners and establishes foundational insights for principled RAG deployment.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

RAG部署 知识整合 LLM
相关文章