cs.AI updates on arXiv.org 07月22日 12:44
XplainAct: Visualization for Personalized Intervention Insights
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为XplainAct的视觉分析框架,旨在支持在亚群体中模拟、解释和推理个体层面的干预措施。通过两个案例研究,展示了其在流行病学中调查阿片类药物相关死亡和总统选举中分析投票倾向的有效性。

arXiv:2507.14767v1 Announce Type: cross Abstract: Causality helps people reason about and understand complex systems, particularly through what-if analyses that explore how interventions might alter outcomes. Although existing methods embrace causal reasoning using interventions and counterfactual analysis, they primarily focus on effects at the population level. These approaches often fall short in systems characterized by significant heterogeneity, where the impact of an intervention can vary widely across subgroups. To address this challenge, we present XplainAct, a visual analytics framework that supports simulating, explaining, and reasoning interventions at the individual level within subpopulations. We demonstrate the effectiveness of XplainAct through two case studies: investigating opioid-related deaths in epidemiology and analyzing voting inclinations in the presidential election.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

因果推理 视觉分析 干预措施 个体层面 XplainAct
相关文章