cs.AI updates on arXiv.org 07月22日 12:44
Spatial-Temporal Transformer with Curriculum Learning for EEG-Based Emotion Recognition
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出SST-CL,一种融合时空变换器和课程学习的情绪识别框架,通过空间和时间编码器提取EEG信号的空间相关性和时间动态,并引入强度感知的课程学习策略,实现情绪强度动态调整下的高精度识别。

arXiv:2507.14698v1 Announce Type: cross Abstract: EEG-based emotion recognition plays an important role in developing adaptive brain-computer communication systems, yet faces two fundamental challenges in practical implementations: (1) effective integration of non-stationary spatial-temporal neural patterns, (2) robust adaptation to dynamic emotional intensity variations in real-world scenarios. This paper proposes SST-CL, a novel framework integrating spatial-temporal transformers with curriculum learning. Our method introduces two core components: a spatial encoder that models inter-channel relationships and a temporal encoder that captures multi-scale dependencies through windowed attention mechanisms, enabling simultaneous extraction of spatial correlations and temporal dynamics from EEG signals. Complementing this architecture, an intensity-aware curriculum learning strategy progressively guides training from high-intensity to low-intensity emotional states through dynamic sample scheduling based on a dual difficulty assessment. Comprehensive experiments on three benchmark datasets demonstrate state-of-the-art performance across various emotional intensity levels, with ablation studies confirming the necessity of both architectural components and the curriculum learning mechanism.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

EEG 情绪识别 时空变换器 课程学习 动态调整
相关文章