cs.AI updates on arXiv.org 07月22日 12:44
Do AI models help produce verified bug fixes?
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过实验研究AI在程序修复中的应用,发现LLM在程序调试中可提供有效辅助,并定义了LLM使用模式,为程序修复提供指导。

arXiv:2507.15822v1 Announce Type: cross Abstract: Among areas of software engineering where AI techniques -- particularly, Large Language Models -- seem poised to yield dramatic improvements, an attractive candidate is Automatic Program Repair (APR), the production of satisfactory corrections to software bugs. Does this expectation materialize in practice? How do we find out, making sure that proposed corrections actually work? If programmers have access to LLMs, how do they actually use them to complement their own skills? To answer these questions, we took advantage of the availability of a program-proving environment, which formally determines the correctness of proposed fixes, to conduct a study of program debugging with two randomly assigned groups of programmers, one with access to LLMs and the other without, both validating their answers through the proof tools. The methodology relied on a division into general research questions (Goals in the Goal-Query-Metric approach), specific elements admitting specific answers (Queries), and measurements supporting these answers (Metrics). While applied so far to a limited sample size, the results are a first step towards delineating a proper role for AI and LLMs in providing guaranteed-correct fixes to program bugs. These results caused surprise as compared to what one might expect from the use of AI for debugging and APR. The contributions also include: a detailed methodology for experiments in the use of LLMs for debugging, which other projects can reuse; a fine-grain analysis of programmer behavior, made possible by the use of full-session recording; a definition of patterns of use of LLMs, with 7 distinct categories; and validated advice for getting the best of LLMs for debugging and Automatic Program Repair.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI程序修复 LLM应用 程序调试
相关文章