cs.AI updates on arXiv.org 07月22日 12:34
NeuroHD-RA: Neural-distilled Hyperdimensional Model with Rhythm Alignment
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合超维度计算(HDC)与可学习神经编码的心电图(ECG)疾病检测新框架,通过RR间期生理信号分段策略,实现任务自适应表示学习,实验结果表明模型性能优于传统方法。

arXiv:2507.14184v1 Announce Type: cross Abstract: We present a novel and interpretable framework for electrocardiogram (ECG)-based disease detection that combines hyperdimensional computing (HDC) with learnable neural encoding. Unlike conventional HDC approaches that rely on static, random projections, our method introduces a rhythm-aware and trainable encoding pipeline based on RR intervals, a physiological signal segmentation strategy that aligns with cardiac cycles. The core of our design is a neural-distilled HDC architecture, featuring a learnable RR-block encoder and a BinaryLinear hyperdimensional projection layer, optimized jointly with cross-entropy and proxy-based metric loss. This hybrid framework preserves the symbolic interpretability of HDC while enabling task-adaptive representation learning. Experiments on Apnea-ECG and PTB-XL demonstrate that our model significantly outperforms traditional HDC and classical ML baselines, achieving 73.09\% precision and an F1 score of 0.626 on Apnea-ECG, with comparable robustness on PTB-XL. Our framework offers an efficient and scalable solution for edge-compatible ECG classification, with strong potential for interpretable and personalized health monitoring.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

ECG疾病检测 超维度计算 神经编码 心电信号 疾病监测
相关文章