cs.AI updates on arXiv.org 16小时前
FactorHD: A Hyperdimensional Computing Model for Multi-Object Multi-Class Representation and Factorization
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出FactorHD,一种新型超维度计算模型,有效处理复杂类-子类关系,提升神经符号AI效率与准确性。

arXiv:2507.12366v1 Announce Type: cross Abstract: Neuro-symbolic artificial intelligence (neuro-symbolic AI) excels in logical analysis and reasoning. Hyperdimensional Computing (HDC), a promising brain-inspired computational model, is integral to neuro-symbolic AI. Various HDC models have been proposed to represent class-instance and class-class relations, but when representing the more complex class-subclass relation, where multiple objects associate different levels of classes and subclasses, they face challenges for factorization, a crucial task for neuro-symbolic AI systems. In this article, we propose FactorHD, a novel HDC model capable of representing and factorizing the complex class-subclass relation efficiently. FactorHD features a symbolic encoding method that embeds an extra memorization clause, preserving more information for multiple objects. In addition, it employs an efficient factorization algorithm that selectively eliminates redundant classes by identifying the memorization clause of the target class. Such model significantly enhances computing efficiency and accuracy in representing and factorizing multiple objects with class-subclass relation, overcoming limitations of existing HDC models such as "superposition catastrophe" and "the problem of 2". Evaluations show that FactorHD achieves approximately 5667x speedup at a representation size of 10^9 compared to existing HDC models. When integrated with the ResNet-18 neural network, FactorHD achieves 92.48% factorization accuracy on the Cifar-10 dataset.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经符号AI 超维度计算 类-子类关系 FactorHD 计算效率
相关文章