cs.AI updates on arXiv.org 07月22日 12:34
A Sparsity Predicting Approach for Large Language Models via Activation Pattern Clustering
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于聚类的激活模式压缩框架,有效利用LLM的激活稀疏性,降低计算成本,同时保持模型质量。

arXiv:2507.14179v1 Announce Type: cross Abstract: Large Language Models (LLMs) exhibit significant activation sparsity, where only a subset of neurons are active for a given input. Although this sparsity presents opportunities to reduce computational cost, efficiently utilizing it requires predicting activation patterns in a scalable manner. However, direct prediction at the neuron level is computationally expensive due to the vast number of neurons in modern LLMs. To enable efficient prediction and utilization of activation sparsity, we propose a clustering-based activation pattern compression framework. Instead of treating each neuron independently, we group similar activation patterns into a small set of representative clusters. Our method achieves up to 79.34% clustering precision, outperforming standard binary clustering approaches while maintaining minimal degradation in perplexity (PPL) scores. With a sufficiently large number of clusters, our approach attains a PPL score as low as 12.49, demonstrating its effectiveness in preserving model quality while reducing computational overhead. By predicting cluster assignments rather than individual neuron states, future models can efficiently infer activation patterns from pre-computed centroids. We detail the clustering algorithm, analyze its effectiveness in capturing meaningful activation structures, and demonstrate its potential to improve sparse computation efficiency. This clustering-based formulation serves as a foundation for future work on activation pattern prediction, paving the way for efficient inference in large-scale language models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 激活模式压缩 聚类算法 计算效率 模型质量
相关文章