cs.AI updates on arXiv.org 07月22日 12:34
Understanding Two-Layer Neural Networks with Smooth Activation Functions
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过Taylor级数展开、严格节点次序、平滑样条实现及平滑连续性限制等四项原理,解析了两层神经网络训练解的获得机制,并证明了其通用逼近能力,揭示了训练解空间‘黑盒’之谜。

arXiv:2507.14177v1 Announce Type: cross Abstract: This paper aims to understand the training solution, which is obtained by the back-propagation algorithm, of two-layer neural networks whose hidden layer is composed of the units with smooth activation functions, including the usual sigmoid type most commonly used before the advent of ReLUs. The mechanism contains four main principles: construction of Taylor series expansions, strict partial order of knots, smooth-spline implementation and smooth-continuity restriction. The universal approximation for arbitrary input dimensionality is proved and experimental verification is given, through which the mystery of ``black box'' of the solution space is largely revealed. The new proofs employed also enrich approximation theory.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络训练 平滑激活函数 逼近理论
相关文章