cs.AI updates on arXiv.org 07月09日 12:01
Neural Velocity for hyperparameter tuning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于神经速度的动态训练方法NeVe,通过监测神经元的转移函数变化率,优化神经网络训练过程,减少对额外数据集的需求。

arXiv:2507.05309v1 Announce Type: cross Abstract: Hyperparameter tuning, such as learning rate decay and defining a stopping criterion, often relies on monitoring the validation loss. This paper presents NeVe, a dynamic training approach that adjusts the learning rate and defines the stop criterion based on the novel notion of "neural velocity". The neural velocity measures the rate of change of each neuron's transfer function and is an indicator of model convergence: sampling neural velocity can be performed even by forwarding noise in the network, reducing the need for a held-out dataset. Our findings show the potential of neural velocity as a key metric for optimizing neural network training efficiently

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络训练 动态调整 神经速度 模型优化 数据集需求
相关文章