cs.AI updates on arXiv.org 07月22日 12:34
Scaling Decentralized Learning with FLock
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出FLock,一种基于区块链的分布式框架,用于安全高效的协同LLM微调。通过经济激励和审计协议,避免中心服务器风险,实现70B参数模型的安全多域微调,提高对抗攻击成功率降低超过68%,并展示优于独立训练模型的跨域泛化能力。

arXiv:2507.15349v1 Announce Type: cross Abstract: Fine-tuning the large language models (LLMs) are prevented by the deficiency of centralized control and the massive computing and communication overhead on the decentralized schemes. While the typical standard federated learning (FL) supports data privacy, the central server requirement creates a single point of attack and vulnerability to poisoning attacks. Generalizing the result in this direction to 70B-parameter models in the heterogeneous, trustless environments has turned out to be a huge, yet unbroken bottleneck. This paper introduces FLock, a decentralized framework for secure and efficient collaborative LLM fine-tuning. Integrating a blockchain-based trust layer with economic incentives, FLock replaces the central aggregator with a secure, auditable protocol for cooperation among untrusted parties. We present the first empirical validation of fine-tuning a 70B LLM in a secure, multi-domain, decentralized setting. Our experiments show the FLock framework defends against backdoor poisoning attacks that compromise standard FL optimizers and fosters synergistic knowledge transfer. The resulting models show a >68% reduction in adversarial attack success rates. The global model also demonstrates superior cross-domain generalization, outperforming models trained in isolation on their own specialized data.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

FLock 分布式微调 LLM 区块链安全 对抗攻击
相关文章