cs.AI updates on arXiv.org 07月22日 12:34
Generating executable oracles to check conformance of client code to requirements of JDK Javadocs using LLMs
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出利用LLM自动化Java库测试预言机,通过Javadoc生成测试预言,实验证明其有效性和准确性。

arXiv:2411.01789v2 Announce Type: cross Abstract: Software testing remains the most widely used methodology for validating quality of code. However, effectiveness of testing critically depends on the quality of test suites used. Test cases in a test suite consist of two fundamental parts: (1) input values for the code under test, and (2) correct checks for the outputs it produces. These checks are commonly written as assertions, and termed test oracles. The last couple of decades have seen much progress in automated test input generation, e.g., using fuzzing and symbolic execution. However, automating test oracles remains a relatively less explored problem area. Indeed, a test oracle by its nature requires knowledge of expected behavior, which may only be known to the developer and may not not exist in a formal language that supports automated reasoning. Our focus in this paper is automation of test oracles for clients of widely used Java libraries, e.g., java.lang and java.util packages. Our key insight is that Javadocs that provide a rich source of information can enable automated generation of test oracles. Javadocs of the core Java libraries are fairly detailed documents that contain natural language descriptions of not only how the libraries behave but also how the clients must (not) use them. We use large language models as an enabling technology to embody our insight into a framework for test oracle automation, and evaluate it experimentally. Our experiments demonstrate that LLMs can generate oracles for checking normal and exceptional behaviors from Javadocs, with 98.8% of these oracles being compilable and 96.4% accurately reflecting intended properties. Even for the few incorrect oracles, errors are minor and can be easily corrected with the help of additional comment information generated by the LLMs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

测试预言机 Java库 LLM 自动化测试
相关文章