arXiv:2502.15090v2 Announce Type: replace-cross Abstract: Modern large language models (LLMs) achieve impressive performance on some tasks, while exhibiting distinctly non-human-like behaviors on others. This raises the question of how well the LLM's learned representations align with human representations. In this work, we introduce a novel approach to study representation alignment: we adopt a method from research on activation steering to identify neurons responsible for specific concepts (e.g., ''cat'') and then analyze the corresponding activation patterns. We find that LLM representations captured this way closely align with human representations inferred from behavioral data, matching inter-human alignment levels. Our approach significantly outperforms the alignment captured by word embeddings, which have been the focus of prior work on human-LLM alignment. Additionally, our approach enables a more granular view of how LLMs represent concepts -- we show that LLMs organize concepts in a way that mirrors human concept organization.