cs.AI updates on arXiv.org 07月22日 12:34
Configurable multi-agent framework for scalable and realistic testing of llm-based agents
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

介绍Neo框架,自动化评估LLM系统,应用于聊天机器人,提升测试效率和安全性。

arXiv:2507.14705v1 Announce Type: new Abstract: Large-language-model (LLM) agents exhibit complex, context-sensitive behaviour that quickly renders static benchmarks and ad-hoc manual testing obsolete. We present Neo, a configurable, multi-agent framework that automates realistic, multi-turn evaluation of LLM-based systems. Neo couples a Question Generation Agent and an Evaluation Agent through a shared context-hub, allowing domain prompts, scenario controls and dynamic feedback to be composed modularly. Test inputs are sampled from a probabilistic state model spanning dialogue flow, user intent and emotional tone, enabling diverse, human-like conversations that adapt after every turn. Applied to a production-grade Seller Financial Assistant chatbot, Neo (i) uncovered edge-case failures across five attack categories with a 3.3% break rate close to the 5.8% achieved by expert human red-teamers, and (ii) delivered 10-12X higher throughput, generating 180 coherent test questions in around 45 mins versus 16h of human effort. Beyond security probing, Neo's stochastic policies balanced topic coverage and conversational depth, yielding broader behavioural exploration than manually crafted scripts. Neo therefore lays a foundation for scalable, self-evolving LLM QA: its agent interfaces, state controller and feedback loops are model-agnostic and extensible to richer factual-grounding and policy-compliance checks. We release the framework to facilitate reproducible, high-fidelity testing of emerging agentic systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 多智能体框架 自动化评估
相关文章