cs.AI updates on arXiv.org 07月21日 12:06
Search-Optimized Quantization in Biomedical Ontology Alignment
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了AI领域高效模型优化技术的最新进展,通过采用先进的transformer模型进行本体对齐,实现边缘设备部署,提高能效和降低延迟。

arXiv:2507.13742v1 Announce Type: cross Abstract: In the fast-moving world of AI, as organizations and researchers develop more advanced models, they face challenges due to their sheer size and computational demands. Deploying such models on edge devices or in resource-constrained environments adds further challenges related to energy consumption, memory usage and latency. To address these challenges, emerging trends are shaping the future of efficient model optimization techniques. From this premise, by employing supervised state-of-the-art transformer-based models, this research introduces a systematic method for ontology alignment, grounded in cosine-based semantic similarity between a biomedical layman vocabulary and the Unified Medical Language System (UMLS) Metathesaurus. It leverages Microsoft Olive to search for target optimizations among different Execution Providers (EPs) using the ONNX Runtime backend, followed by an assembled process of dynamic quantization employing Intel Neural Compressor and IPEX (Intel Extension for PyTorch). Through our optimization process, we conduct extensive assessments on the two tasks from the DEFT 2020 Evaluation Campaign, achieving a new state-of-the-art in both. We retain performance metrics intact, while attaining an average inference speed-up of 20x and reducing memory usage by approximately 70%.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI模型优化 边缘计算 能效提升
相关文章