cs.AI updates on arXiv.org 07月21日 12:06
Kolmogorov Arnold Networks (KANs) for Imbalanced Data -- An Empirical Perspective
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文实证评估了Kolmogorov Arnold Networks(KANs)在不平衡分类中的性能,发现KANs在原始不平衡数据上表现优于多层感知器(MLPs),但传统的平衡策略与KANs的数学结构冲突,且计算成本高。

arXiv:2507.14121v1 Announce Type: cross Abstract: Kolmogorov Arnold Networks (KANs) are recent architectural advancement in neural computation that offer a mathematically grounded alternative to standard neural networks. This study presents an empirical evaluation of KANs in context of class imbalanced classification, using ten benchmark datasets. We observe that KANs can inherently perform well on raw imbalanced data more effectively than Multi-Layer Perceptrons (MLPs) without any resampling strategy. However, conventional imbalance strategies fundamentally conflict with KANs mathematical structure as resampling and focal loss implementations significantly degrade KANs performance, while marginally benefiting MLPs. Crucially, KANs suffer from prohibitive computational costs without proportional performance gains. Statistical validation confirms that MLPs with imbalance techniques achieve equivalence with KANs (|d|

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

KANs 不平衡分类 多层感知器 计算成本 性能评估
相关文章