cs.AI updates on arXiv.org 07月21日 12:06
VerilogDB: The Largest, Highest-Quality Dataset with a Preprocessing Framework for LLM-based RTL Generation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大型语言模型(LLM)在硬件设计自动化中的角色,特别是通过寄存器传输级(RTL)代码生成。通过构建一个包含20,392个Verilog样本的数据库,研究评估了LLM在RTL生成中的关键要求和挑战。

arXiv:2507.13369v1 Announce Type: cross Abstract: Large Language Models (LLMs) are gaining popularity for hardware design automation, particularly through Register Transfer Level (RTL) code generation. In this work, we examine the current literature on RTL generation using LLMs and identify key requirements for training and fine-tuning datasets. We construct a robust Verilog dataset through an automated three-pronged process involving database (DB) creation and management with PostgreSQL, data collection from code hosting sites like OpenCores and GitHub, and data preprocessing to verify the codes' syntax, run logic synthesis, and extract relevant module metadata. We implement a scalable and efficient DB infrastructure to support analysis and detail our preprocessing pipeline to enforce high-quality data before DB insertion. The resulting dataset comprises 20,392 Verilog samples, 751 MB of Verilog code data, which is the largest high-quality Verilog dataset for LLM fine-tuning to our knowledge. We further evaluate the dataset, address associated challenges, and explore potential applications for future research and development in LLM-based hardware generation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM RTL代码生成 硬件设计 数据集
相关文章