cs.AI updates on arXiv.org 07月18日 12:13
Efficient Adaptation of Pre-trained Vision Transformer underpinned by Approximately Orthogonal Fine-Tuning Strategy
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出Approximately Orthogonal Fine-Tuning (AOFT)策略,通过在ViT中引入近似正交性质,增强模型泛化能力,并在下游图像分类任务中表现出色。

arXiv:2507.13260v1 Announce Type: cross Abstract: A prevalent approach in Parameter-Efficient Fine-Tuning (PEFT) of pre-trained Vision Transformers (ViT) involves freezing the majority of the backbone parameters and solely learning low-rank adaptation weight matrices to accommodate downstream tasks. These low-rank matrices are commonly derived through the multiplication structure of down-projection and up-projection matrices, exemplified by methods such as LoRA and Adapter. In this work, we observe an approximate orthogonality among any two row or column vectors within any weight matrix of the backbone parameters; however, this property is absent in the vectors of the down/up-projection matrices. Approximate orthogonality implies a reduction in the upper bound of the model's generalization error, signifying that the model possesses enhanced generalization capability. If the fine-tuned down/up-projection matrices were to exhibit this same property as the pre-trained backbone matrices, could the generalization capability of fine-tuned ViTs be further augmented? To address this question, we propose an Approximately Orthogonal Fine-Tuning (AOFT) strategy for representing the low-rank weight matrices. This strategy employs a single learnable vector to generate a set of approximately orthogonal vectors, which form the down/up-projection matrices, thereby aligning the properties of these matrices with those of the backbone. Extensive experimental results demonstrate that our method achieves competitive performance across a range of downstream image classification tasks, confirming the efficacy of the enhanced generalization capability embedded in the down/up-projection matrices.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

PEFT ViT 泛化能力 Approximately Orthogonal 图像分类
相关文章