cs.AI updates on arXiv.org 16小时前
SS-DC: Spatial-Spectral Decoupling and Coupling Across Visible-Infrared Gap for Domain Adaptive Object Detection
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出SS-DC框架,通过解耦-耦合策略,优化光谱分解,实现可见光到红外域的域自适应对象检测,显著提升检测性能。

arXiv:2507.12017v1 Announce Type: cross Abstract: Unsupervised domain adaptive object detection (UDAOD) from the visible domain to the infrared (RGB-IR) domain is challenging. Existing methods regard the RGB domain as a unified domain and neglect the multiple subdomains within it, such as daytime, nighttime, and foggy scenes. We argue that decoupling the domain-invariant (DI) and domain-specific (DS) features across these multiple subdomains is beneficial for RGB-IR domain adaptation. To this end, this paper proposes a new SS-DC framework based on a decoupling-coupling strategy. In terms of decoupling, we design a Spectral Adaptive Idempotent Decoupling (SAID) module in the aspect of spectral decomposition. Due to the style and content information being highly embedded in different frequency bands, this module can decouple DI and DS components more accurately and interpretably. A novel filter bank-based spectral processing paradigm and a self-distillation-driven decoupling loss are proposed to improve the spectral domain decoupling. In terms of coupling, a new spatial-spectral coupling method is proposed, which realizes joint coupling through spatial and spectral DI feature pyramids. Meanwhile, this paper introduces DS from decoupling to reduce the domain bias. Extensive experiments demonstrate that our method can significantly improve the baseline performance and outperform existing UDAOD methods on multiple RGB-IR datasets, including a new experimental protocol proposed in this paper based on the FLIR-ADAS dataset.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SS-DC框架 域自适应 对象检测 RGB-IR域 光谱分解
相关文章