cs.AI updates on arXiv.org 16小时前
LLM-Based Config Synthesis requires Disambiguation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了使用大型语言模型(LLM)进行程序综合时,用户意图模糊带来的问题,并针对网络配置合成场景提出了一种名为Clarify的原型系统,该系统通过增加Disambiguator模块帮助明确用户意图,从而提高LLM合成路由策略的准确性。

arXiv:2507.12443v1 Announce Type: cross Abstract: Beyond hallucinations, another problem in program synthesis using LLMs is ambiguity in user intent. We illustrate the ambiguity problem in a networking context for LLM-based incremental configuration synthesis of route-maps and ACLs. These structures frequently overlap in header space, making the relative priority of actions impossible for the LLM to infer without user interaction. Measurements in a large cloud identify complex ACLs with 100's of overlaps, showing ambiguity is a real problem. We propose a prototype system, Clarify, which uses an LLM augmented with a new module called a Disambiguator that helps elicit user intent. On a small synthetic workload, Clarify incrementally synthesizes routing policies after disambiguation and then verifies them. Our treatment of ambiguities is useful more generally when the intent of updates can be correctly synthesized by LLMs, but their integration is ambiguous and can lead to different global behaviors.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 程序综合 用户意图模糊 Clarify系统 网络配置
相关文章