cs.AI updates on arXiv.org 15小时前
Reprogramming Vision Foundation Models for Spatio-Temporal Forecasting
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为ST-VFM的新框架,通过结合视觉和时空数据,对时空预测任务进行改进。该框架采用双重分支架构和重新编程技术,在时空数据集上取得优异效果。

arXiv:2507.11558v1 Announce Type: cross Abstract: Foundation models have achieved remarkable success in natural language processing and computer vision, demonstrating strong capabilities in modeling complex patterns. While recent efforts have explored adapting large language models (LLMs) for time-series forecasting, LLMs primarily capture one-dimensional sequential dependencies and struggle to model the richer spatio-temporal (ST) correlations essential for accurate ST forecasting. In this paper, we present \textbf{ST-VFM}, a novel framework that systematically reprograms Vision Foundation Models (VFMs) for general-purpose spatio-temporal forecasting. While VFMs offer powerful spatial priors, two key challenges arise when applying them to ST tasks: (1) the lack of inherent temporal modeling capacity and (2) the modality gap between visual and ST data. To address these, ST-VFM adopts a \emph{dual-branch architecture} that integrates raw ST inputs with auxiliary ST flow inputs, where the flow encodes lightweight temporal difference signals interpretable as dynamic spatial cues. To effectively process these dual-branch inputs, ST-VFM introduces two dedicated reprogramming stages. The \emph{pre-VFM reprogramming} stage applies a Temporal-Aware Token Adapter to embed temporal context and align both branches into VFM-compatible feature spaces. The \emph{post-VFM reprogramming} stage introduces a Bilateral Cross-Prompt Coordination module, enabling dynamic interaction between branches through prompt-based conditioning, thus enriching joint representation learning without modifying the frozen VFM backbone. Extensive experiments on ten spatio-temporal datasets show that ST-VFM outperforms state-of-the-art baselines, demonstrating effectiveness and robustness across VFM backbones (e.g., DINO, CLIP, DEIT) and ablation studies, establishing it as a strong general framework for spatio-temporal forecasting.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时空预测 ST-VFM 视觉模型 时空数据
相关文章