arXiv:2412.03884v2 Announce Type: replace Abstract: The fast growth of deep learning has brought great progress in AI-based applications. However, these models are often seen as "black boxes," which makes them hard to understand, explain, or trust. Explainable Artificial Intelligence (XAI) tries to make AI decisions clearer so that people can understand how and why the model makes certain choices. Even though many studies have focused on XAI, there is still a lack of standard ways to measure how well these explanation methods work in real-world situations. This study introduces a single evaluation framework for XAI. It uses both numbers and user feedback to check if the explanations are correct, easy to understand, fair, complete, and reliable. The framework focuses on users' needs and different application areas, which helps improve the trust and use of AI in important fields. To fix problems in current evaluation methods, we propose clear steps, including loading data, creating explanations, and fully testing them. We also suggest setting common benchmarks. We show the value of this framework through case studies in healthcare, finance, farming, and self-driving systems. These examples prove that our method can support fair and trustworthy evaluation of XAI methods. This work gives a clear and practical way to improve transparency and trust in AI systems used in the real world.