arXiv:2507.11117v1 Announce Type: new Abstract: Decentralized trading of real-world alternative assets (e.g., gold) requires bridging physical asset custody with blockchain systems while meeting strict requirements for compliance, liquidity, and risk management. We present GoldMine OS, a research oriented architecture that employs multiple specialized AI agents to automate and secure the tokenization and exchange of physical gold into a blockchain based stablecoin ("OZ"). Our approach combines on chain smart contracts for critical risk controls with off chain AI agents for decision making, blending the transparency and reliability of blockchains with the flexibility of AI driven automation. We describe four cooperative agents (Compliance, Token Issuance, Market Making, and Risk Control) and a coordinating core, and evaluate the system through simulation and a controlled pilot deployment. In experiments the prototype delivers on demand token issuance in under 1.2 s, more than 100 times faster than manual workflows. The Market Making agent maintains tight liquidity with spreads often below 0.5 percent even under volatile conditions. Fault injection tests show resilience: an oracle price spoofing attack is detected and mitigated within 10 s, and a simulated vault mis reporting halts issuance immediately with minimal user impact. The architecture scales to 5000 transactions per second with 10000 concurrent users in benchmarks. These results indicate that an AI agent based decentralized exchange for alternative assets can satisfy rigorous performance and safety requirements. We discuss broader implications for democratizing access to traditionally illiquid assets and explain how our governance model -- multi signature agent updates and on chain community voting on risk parameters -- provides ongoing transparency, adaptability, and formal assurance of system integrity.