arXiv:2507.11269v1 Announce Type: cross Abstract: Deep reinforcement learning (DRL) agents excel in solving complex decision-making tasks across various domains. However, they often require a substantial number of training steps and a vast experience replay buffer, leading to significant computational and resource demands. To address these challenges, we introduce a novel theoretical result that leverages the Neyman-Rubin potential outcomes framework into DRL. Unlike most methods that focus on bounding the counterfactual loss, we establish a causal bound on the factual loss, which is analogous to the on-policy loss in DRL. This bound is computed by storing past value network outputs in the experience replay buffer, effectively utilizing data that is usually discarded. Extensive experiments across the Atari 2600 and MuJoCo domains on various agents, such as DQN and SAC, achieve up to 2,427% higher reward ratio, outperforming the same agents without our proposed term, and reducing the experience replay buffer size by up to 96%, significantly improving sample efficiency at negligible cost.