cs.AI updates on arXiv.org 07月15日 12:24
Feature Distillation is the Better Choice for Model-Heterogeneous Federated Learning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种针对模型异构联邦学习的稳定高效特征蒸馏方法FedFD,通过正交投影整合异构模型知识,提升全局模型性能。

arXiv:2507.10348v1 Announce Type: cross Abstract: Model-Heterogeneous Federated Learning (Hetero-FL) has attracted growing attention for its ability to aggregate knowledge from heterogeneous models while keeping private data locally. To better aggregate knowledge from clients, ensemble distillation, as a widely used and effective technique, is often employed after global aggregation to enhance the performance of the global model. However, simply combining Hetero-FL and ensemble distillation does not always yield promising results and can make the training process unstable. The reason is that existing methods primarily focus on logit distillation, which, while being model-agnostic with softmax predictions, fails to compensate for the knowledge bias arising from heterogeneous models. To tackle this challenge, we propose a stable and efficient Feature Distillation for model-heterogeneous Federated learning, dubbed FedFD, that can incorporate aligned feature information via orthogonal projection to integrate knowledge from heterogeneous models better. Specifically, a new feature-based ensemble federated knowledge distillation paradigm is proposed. The global model on the server needs to maintain a projection layer for each client-side model architecture to align the features separately. Orthogonal techniques are employed to re-parameterize the projection layer to mitigate knowledge bias from heterogeneous models and thus maximize the distilled knowledge. Extensive experiments show that FedFD achieves superior performance compared to state-of-the-art methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

模型异构联邦学习 特征蒸馏 FedFD 知识蒸馏 异构模型
相关文章