cs.AI updates on arXiv.org 07月15日 12:24
Taming Modern Point Tracking for Speckle Tracking Echocardiography via Impartial Motion
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究利用最先进的点跟踪方法在超声心动图中的应用,通过优化训练策略和定制增强,显著提升模型性能,提高心脏功能测量的精确度。

arXiv:2507.10127v1 Announce Type: cross Abstract: Accurate motion estimation for tracking deformable tissues in echocardiography is essential for precise cardiac function measurements. While traditional methods like block matching or optical flow struggle with intricate cardiac motion, modern point tracking approaches remain largely underexplored in this domain. This work investigates the potential of state-of-the-art (SOTA) point tracking methods for ultrasound, with a focus on echocardiography. Although these novel approaches demonstrate strong performance in general videos, their effectiveness and generalizability in echocardiography remain limited. By analyzing cardiac motion throughout the heart cycle in real B-mode ultrasound videos, we identify that a directional motion bias across different views is affecting the existing training strategies. To mitigate this, we refine the training procedure and incorporate a set of tailored augmentations to reduce the bias and enhance tracking robustness and generalization through impartial cardiac motion. We also propose a lightweight network leveraging multi-scale cost volumes from spatial context alone to challenge the advanced spatiotemporal point tracking models. Experiments demonstrate that fine-tuning with our strategies significantly improves models' performances over their baselines, even for out-of-distribution (OOD) cases. For instance, EchoTracker boosts overall position accuracy by 60.7% and reduces median trajectory error by 61.5% across heart cycle phases. Interestingly, several point tracking models fail to outperform our proposed simple model in terms of tracking accuracy and generalization, reflecting their limitations when applied to echocardiography. Nevertheless, clinical evaluation reveals that these methods improve GLS measurements, aligning more closely with expert-validated, semi-automated tools and thus demonstrating better reproducibility in real-world applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

超声心动图 运动追踪 点跟踪技术 模型性能提升 心脏功能测量
相关文章