cs.AI updates on arXiv.org 07月15日 12:24
On Evaluating Performance of LLM Inference Serving Systems
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文系统分析了LLM推理系统中的常见评估反模式,揭示了其在基准公平性、评估设置和指标设计等方面的缺陷,并提出了改进框架和案例研究。

arXiv:2507.09019v1 Announce Type: cross Abstract: The rapid evolution of Large Language Model (LLM) inference systems has yielded significant efficiency improvements. However, our systematic analysis reveals that current evaluation methodologies frequently exhibit fundamental flaws, often manifesting as common evaluation anti-patterns that obscure true performance characteristics and impede scientific progress. Through a comprehensive examination of recent systems, we identify recurring anti-patterns across three key dimensions: Baseline Fairness, Evaluation Setup, and Metric Design. These anti-patterns are uniquely problematic for LLM inference due to its dual-phase nature combining distinct prefill and decode operations, its handling of highly heterogeneous workloads, and its strict temporal requirements for interactive use. We demonstrate how common anti-patterns -- such as inadequate baseline comparisons that conflate engineering effort with algorithmic novelty, workload selections that fail to represent production scenarios, and metric normalizations that hide substantial performance variability like generation stalls-lead to misleading conclusions. To address these challenges, we provide a comprehensive checklist derived from our analysis, establishing a framework for recognizing and avoiding these anti-patterns in favor of robust LLM inference evaluation. To demonstrate the practical application of our framework, we present a case study analyzing speculative decoding, a technique whose bursty, non-uniform token generation is easily misinterpreted when evaluated using approaches characteristic of these anti-patterns. Our work establishes a rigorous foundation for evaluation methodology, enabling meaningful comparisons, ensuring reproducible results, and ultimately accelerating genuine progress in LLM inference systems by moving beyond common anti-patterns to align evaluation with real-world requirements.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM推理 评估方法论 反模式 案例研究
相关文章