cs.AI updates on arXiv.org 07月15日 12:24
Self-supervised Learning on Camera Trap Footage Yields a Strong Universal Face Embedder
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种基于自监督学习的 chimpanzee 面部嵌入方法,通过 DINOv2 框架和 Vision Transformers,从未标记的相机陷阱视频中学习,实现动物个体识别,为生物多样性监测提供新途径。

arXiv:2507.10552v1 Announce Type: cross Abstract: Camera traps are revolutionising wildlife monitoring by capturing vast amounts of visual data; however, the manual identification of individual animals remains a significant bottleneck. This study introduces a fully self-supervised approach to learning robust chimpanzee face embeddings from unlabeled camera-trap footage. Leveraging the DINOv2 framework, we train Vision Transformers on automatically mined face crops, eliminating the need for identity labels. Our method demonstrates strong open-set re-identification performance, surpassing supervised baselines on challenging benchmarks such as Bossou, despite utilising no labelled data during training. This work underscores the potential of self-supervised learning in biodiversity monitoring and paves the way for scalable, non-invasive population studies.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

自监督学习 野生动物监测 面部嵌入 DINOv2 Vision Transformers
相关文章