cs.AI updates on arXiv.org 07月15日 12:24
Toward Real-World Table Agents: Capabilities, Workflows, and Design Principles for LLM-based Table Intelligence
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨基于LLM的表格处理技术,分析其核心能力,并通过案例分析揭示学术基准与实际应用之间的差距,提出改进策略。

arXiv:2507.10281v1 Announce Type: new Abstract: Tables are fundamental in domains such as finance, healthcare, and public administration, yet real-world table tasks often involve noise, structural heterogeneity, and semantic complexity--issues underexplored in existing research that primarily targets clean academic datasets. This survey focuses on LLM-based Table Agents, which aim to automate table-centric workflows by integrating preprocessing, reasoning, and domain adaptation. We define five core competencies--C1: Table Structure Understanding, C2: Table and Query Semantic Understanding, C3: Table Retrieval and Compression, C4: Executable Reasoning with Traceability, and C5: Cross-Domain Generalization--to analyze and compare current approaches. In addition, a detailed examination of the Text-to-SQL Agent reveals a performance gap between academic benchmarks and real-world scenarios, especially for open-source models. Finally, we provide actionable insights to improve the robustness, generalization, and efficiency of LLM-based Table Agents in practical settings.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 表格处理 能力分析 性能改进 实际应用
相关文章