cs.AI updates on arXiv.org 07月15日 12:24
Survey for Categorising Explainable AI Studies Using Data Analysis Task Frameworks
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文针对XAI在数据分析任务中的研究,提出一种基于视觉分析、认知和仪表盘设计的三维分类方法,旨在解决任务描述不足、研究无上下文、测试用户不足等问题,并给出XAI任务设计和报告的指南。

arXiv:2507.10208v1 Announce Type: new Abstract: Research into explainable artificial intelligence (XAI) for data analysis tasks suffer from a large number of contradictions and lack of concrete design recommendations stemming from gaps in understanding the tasks that require AI assistance. In this paper, we drew on multiple fields such as visual analytics, cognition, and dashboard design to propose a method for categorising and comparing XAI studies under three dimensions: what, why, and who. We identified the main problems as: inadequate descriptions of tasks, context-free studies, and insufficient testing with target users. We propose that studies should specifically report on their users' domain, AI, and data analysis expertise to illustrate the generalisability of their findings. We also propose study guidelines for designing and reporting XAI tasks to improve the XAI community's ability to parse the rapidly growing field. We hope that our contribution can help researchers and designers better identify which studies are most relevant to their work, what gaps exist in the research, and how to handle contradictory results regarding XAI design.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

XAI 数据分析 研究方法
相关文章