cs.AI updates on arXiv.org 07月14日 12:08
A document is worth a structured record: Principled inductive bias design for document recognition
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出将文档识别视为从文档到记录的转录任务,并设计结构特定归纳偏差以提升机器学习模型的识别效果,通过实验验证了其在不同结构文档中的应用。

arXiv:2507.08458v1 Announce Type: cross Abstract: Many document types use intrinsic, convention-driven structures that serve to encode precise and structured information, such as the conventions governing engineering drawings. However, state-of-the-art approaches treat document recognition as a mere computer vision problem, neglecting these underlying document-type-specific structural properties, making them dependent on sub-optimal heuristic post-processing and rendering many less frequent or more complicated document types inaccessible to modern document recognition. We suggest a novel perspective that frames document recognition as a transcription task from a document to a record. This implies a natural grouping of documents based on the intrinsic structure inherent in their transcription, where related document types can be treated (and learned) similarly. We propose a method to design structure-specific inductive biases for the underlying machine-learned end-to-end document recognition systems, and a respective base transformer architecture that we successfully adapt to different structures. We demonstrate the effectiveness of the so-found inductive biases in extensive experiments with progressively complex record structures from monophonic sheet music, shape drawings, and simplified engineering drawings. By integrating an inductive bias for unrestricted graph structures, we train the first-ever successful end-to-end model to transcribe engineering drawings to their inherently interlinked information. Our approach is relevant to inform the design of document recognition systems for document types that are less well understood than standard OCR, OMR, etc., and serves as a guide to unify the design of future document foundation models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

文档识别 转录任务 结构特定归纳偏差
相关文章