cs.AI updates on arXiv.org 前天 12:08
Compositional Risk Minimization
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种应对组合分布变化的新方法,即组合风险最小化(CRM),通过灵活的加性能量分布模型,提高模型在新型属性组合上的泛化能力,并在基准数据集上验证了其相较于其他方法的优越性。

arXiv:2410.06303v3 Announce Type: replace-cross Abstract: Compositional generalization is a crucial step towards developing data-efficient intelligent machines that generalize in human-like ways. In this work, we tackle a challenging form of distribution shift, termed compositional shift, where some attribute combinations are completely absent at training but present in the test distribution. This shift tests the model's ability to generalize compositionally to novel attribute combinations in discriminative tasks. We model the data with flexible additive energy distributions, where each energy term represents an attribute, and derive a simple alternative to empirical risk minimization termed compositional risk minimization (CRM). We first train an additive energy classifier to predict the multiple attributes and then adjust this classifier to tackle compositional shifts. We provide an extensive theoretical analysis of CRM, where we show that our proposal extrapolates to special affine hulls of seen attribute combinations. Empirical evaluations on benchmark datasets confirms the improved robustness of CRM compared to other methods from the literature designed to tackle various forms of subpopulation shifts.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

组合泛化 数据分布变化 组合风险最小化 加性能量分布 模型泛化能力
相关文章