cs.AI updates on arXiv.org 07月14日 12:08
Dual-Attention U-Net++ with Class-Specific Ensembles and Bayesian Hyperparameter Optimization for Precise Wound and Scale Marker Segmentation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种结合通道和空间注意力机制的U-Net++架构,在临床图像伤口和刻度标记分割任务中取得显著效果,并展示了在NBC 2025 & PCBBE 2025竞赛数据集上的高F1分数表现。

arXiv:2507.05314v1 Announce Type: cross Abstract: Accurate segmentation of wounds and scale markers in clinical images remainsa significant challenge, crucial for effective wound management and automatedassessment. In this study, we propose a novel dual-attention U-Net++ archi-tecture, integrating channel-wise (SCSE) and spatial attention mechanisms toaddress severe class imbalance and variability in medical images effectively.Initially, extensive benchmarking across diverse architectures and encoders via 5-fold cross-validation identified EfficientNet-B7 as the optimal encoder backbone.Subsequently, we independently trained two class-specific models with tailoredpreprocessing, extensive data augmentation, and Bayesian hyperparameter tun-ing (WandB sweeps). The final model ensemble utilized Test Time Augmentationto further enhance prediction reliability. Our approach was evaluated on a bench-mark dataset from the NBC 2025 & PCBBE 2025 competition. Segmentationperformance was quantified using a weighted F1-score (75% wounds, 25% scalemarkers), calculated externally by competition organizers on undisclosed hard-ware. The proposed approach achieved an F1-score of 0.8640, underscoring itseffectiveness for complex medical segmentation tasks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

U-Net++ 图像分割 医疗图像 注意力机制 F1分数
相关文章