cs.AI updates on arXiv.org 07月14日 12:08
Unlocking Speech Instruction Data Potential with Query Rewriting
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种利用多LLM知识融合的查询重写框架,以构建高质量的语音指令集,提高数据可用性,并通过实验验证了其在复杂知识及语境相关能力方面的优势。

arXiv:2507.08603v1 Announce Type: new Abstract: End-to-end Large Speech Language Models~(\textbf{LSLMs}) demonstrate strong potential in response latency and speech comprehension capabilities, showcasing general intelligence across speech understanding tasks. However, the ability to follow speech instructions has not been fully realized due to the lack of datasets and heavily biased training tasks. Leveraging the rich ASR datasets, previous approaches have used Large Language Models~(\textbf{LLMs}) to continue the linguistic information of speech to construct speech instruction datasets. Yet, due to the gap between LLM-generated results and real human responses, the continuation methods further amplify these shortcomings. Given the high costs of collecting and annotating speech instruction datasets by humans, using speech synthesis to construct large-scale speech instruction datasets has become a balanced and robust alternative. Although modern Text-To-Speech~(\textbf{TTS}) models have achieved near-human-level synthesis quality, it is challenging to appropriately convert out-of-distribution text instruction to speech due to the limitations of the training data distribution in TTS models. To address this issue, we propose a query rewriting framework with multi-LLM knowledge fusion, employing multiple agents to annotate and validate the synthesized speech, making it possible to construct high-quality speech instruction datasets without relying on human annotation. Experiments show that this method can transform text instructions into distributions more suitable for TTS models for speech synthesis through zero-shot rewriting, increasing data usability from 72\% to 93\%. It also demonstrates unique advantages in rewriting tasks that require complex knowledge and context-related abilities.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语音指令集 LLM知识融合 查询重写 语音合成 数据可用性
相关文章