cs.AI updates on arXiv.org 07月14日 12:08
Reasoning and Behavioral Equilibria in LLM-Nash Games: From Mindsets to Actions
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出LLM-Nash框架,通过大型语言模型引导决策,捕捉有限理性,研究认知约束和知识学习。该框架定义了提示空间上的均衡,并展示了推理均衡如何与经典纳什均衡不同,为LLM系统中的战略互动提供新基础。

arXiv:2507.08208v1 Announce Type: new Abstract: We introduce the LLM-Nash framework, a game-theoretic model where agents select reasoning prompts to guide decision-making via Large Language Models (LLMs). Unlike classical games that assume utility-maximizing agents with full rationality, this framework captures bounded rationality by modeling the reasoning process explicitly. Equilibrium is defined over the prompt space, with actions emerging as the behavioral output of LLM inference. This approach enables the study of cognitive constraints, mindset expressiveness, and epistemic learning. Through illustrative examples, we show how reasoning equilibria can diverge from classical Nash outcomes, offering a new foundation for strategic interaction in LLM-enabled systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM-Nash框架 博弈论 认知约束 知识学习
相关文章