cs.AI updates on arXiv.org 07月11日 12:04
Offline Trajectory Optimization for Offline Reinforcement Learning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出OTTO,一种离线轨迹优化方法,通过长时模拟和模型不确定性评估来提升离线强化学习的数据增强质量。

arXiv:2404.10393v2 Announce Type: replace-cross Abstract: Offline reinforcement learning (RL) aims to learn policies without online explorations. To enlarge the training data, model-based offline RL learns a dynamics model which is utilized as a virtual environment to generate simulation data and enhance policy learning. However, existing data augmentation methods for offline RL suffer from (i) trivial improvement from short-horizon simulation; and (ii) the lack of evaluation and correction for generated data, leading to low-qualified augmentation. In this paper, we propose offline trajectory optimization for offline reinforcement learning (OTTO). The key motivation is to conduct long-horizon simulation and then utilize model uncertainty to evaluate and correct the augmented data. Specifically, we propose an ensemble of Transformers, a.k.a. World Transformers, to predict environment state dynamics and the reward function. Three strategies are proposed to use World Transformers to generate long-horizon trajectory simulation by perturbing the actions in the offline data. Then, an uncertainty-based World Evaluator is introduced to firstly evaluate the confidence of the generated trajectories and then perform the correction for low-confidence data. Finally, we jointly use the original data with the corrected augmentation data to train an offline RL algorithm. OTTO serves as a plug-in module and can be integrated with existing model-free offline RL methods. Experiments on various benchmarks show that OTTO can effectively improve the performance of representative offline RL algorithms, including in complex environments with sparse rewards like AntMaze. Codes are available at https://github.com/ZiqiZhao1/OTTO.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

离线强化学习 数据增强 OTTO 模型不确定性 长时模拟
相关文章