cs.AI updates on arXiv.org 前天 12:04
Multigranular Evaluation for Brain Visual Decoding
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出BASIC评估框架,旨在解决现有脑视觉解码评估方法中存在的问题,如缺乏神经科学基础和难以捕捉精细视觉差异。BASIC框架通过联合量化结构保真度、推理对齐和上下文一致性,为脑视觉解码方法提供更具有判别性、可解释性和全面性的评估。

arXiv:2507.07993v1 Announce Type: cross Abstract: Existing evaluation protocols for brain visual decoding predominantly rely on coarse metrics that obscure inter-model differences, lack neuroscientific foundation, and fail to capture fine-grained visual distinctions. To address these limitations, we introduce BASIC, a unified, multigranular evaluation framework that jointly quantifies structural fidelity, inferential alignment, and contextual coherence between decoded and ground truth images. For the structural level, we introduce a hierarchical suite of segmentation-based metrics, including foreground, semantic, instance, and component masks, anchored in granularity-aware correspondence across mask structures. For the semantic level, we extract structured scene representations encompassing objects, attributes, and relationships using multimodal large language models, enabling detailed, scalable, and context-rich comparisons with ground-truth stimuli. We benchmark a diverse set of visual decoding methods across multiple stimulus-neuroimaging datasets within this unified evaluation framework. Together, these criteria provide a more discriminative, interpretable, and comprehensive foundation for measuring brain visual decoding methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

脑视觉解码 评估框架 BASIC 神经科学 视觉解码方法
相关文章