cs.AI updates on arXiv.org 前天 12:04
Leveraging Manifold Embeddings for Enhanced Graph Transformer Representations and Learning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出一种改进的图变换器,通过引入轻量级黎曼混合专家层,优化节点嵌入,提升节点分类精度,同时提高图表示的可解释性。

arXiv:2507.07335v1 Announce Type: cross Abstract: Graph transformers typically embed every node in a single Euclidean space, blurring heterogeneous topologies. We prepend a lightweight Riemannian mixture-of-experts layer that routes each node to various kinds of manifold, mixture of spherical, flat, hyperbolic - best matching its local structure. These projections provide intrinsic geometric explanations to the latent space. Inserted into a state-of-the-art ensemble graph transformer, this projector lifts accuracy by up to 3% on four node-classification benchmarks. The ensemble makes sure that both euclidean and non-euclidean features are captured. Explicit, geometry-aware projection thus sharpens predictive power while making graph representations more interpretable.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图变换器 节点分类 精度提升
相关文章