cs.AI updates on arXiv.org 前天 12:01
Geo-Registration of Terrestrial LiDAR Point Clouds with Satellite Images without GNSS
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

针对城市高密度区域GNSS信号受限问题,提出一种基于卫星图像的三维点云地理配准方法,无需依赖先验定位,显著提升点云数据精度。

arXiv:2507.05999v1 Announce Type: cross Abstract: Accurate geo-registration of LiDAR point clouds presents significant challenges in GNSS signal denied urban areas with high-rise buildings and bridges. Existing methods typically rely on real-time GNSS and IMU data, that require pre-calibration and assume stable positioning during data collection. However, this assumption often fails in dense urban areas, resulting in localization errors. To address this, we propose a structured geo-registration and spatial correction method that aligns 3D point clouds with satellite images, enabling frame-wise recovery of GNSS information and reconstruction of city scale 3D maps without relying on prior localization. The proposed approach employs a pre-trained Point Transformer model to segment the road points and then extracts the road skeleton and intersection points from the point cloud as well as the target map for alignment. Global rigid alignment of the two is performed using the intersection points, followed by local refinement using radial basis function (RBF) interpolation. Elevation correction is then applied to the point cloud based on terrain information from SRTM dataset to resolve vertical discrepancies. The proposed method was tested on the popular KITTI benchmark and a locally collected Perth (Western Australia) CBD dataset. On the KITTI dataset, our method achieved an average planimetric alignment standard deviation (STD) of 0.84~m across sequences with intersections, representing a 55.3\% improvement over the original dataset. On the Perth dataset, which lacks GNSS information, our method achieved an average STD of 0.96~m compared to the GPS data extracted from Google Maps API. This corresponds to a 77.4\% improvement from the initial alignment. Our method also resulted in elevation correlation gains of 30.5\% on the KITTI dataset and 50.4\% on the Perth dataset.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LiDAR点云 地理配准 卫星图像 三维地图 精度提升
相关文章