cs.AI updates on arXiv.org 07月11日 12:04
Helix Parallelism: Rethinking Sharding Strategies for Interactive Multi-Million-Token LLM Decoding
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出Helix并行策略,通过优化KV并行和Tensor Parallelism,有效减少Token-to-Token Latency,提升LLM实时解码效率,推动超长序列实时推理成为可能。

arXiv:2507.07120v1 Announce Type: cross Abstract: As LLMs scale to multi-million-token KV histories, real-time autoregressive decoding under tight Token-to-Token Latency (TTL) constraints faces growing pressure. Two core bottlenecks dominate: accessing Feed-Forward Network (FFN) weights and reading long KV caches. While Tensor Parallelism (TP) helps mitigate the cost of FFN weight reads, it does not scale well for attention. When TP width exceeds the number of KV heads, it leads to inefficient KV duplication, limits parallelism, and constrains batch size. Simultaneously, DRAM reads for long KV histories scale linearly with batch size, further capping efficiency. We introduce Helix Parallelism, a hybrid execution strategy that applies KV parallelism during attention to shard KV caches across GPUs, then reuses the same GPUs for TP in dense LLMs or TPxExpert Parallel (EP) in MoEs during FFN computation. To preserve exact attention behavior, Helix includes a lightweight communication step. To minimize the exposed communication cost, we introduce Helix HOP-B. Helix HOP-B effectively minimizes communication overhead through batchwise overlap, preserving low TTL while improving GPU efficiency. Compared to conventional parallelism approaches, Helix reduces TTL by up to 1.5x at fixed batch sizes and supports up to 32x larger batches under the same latency budget for DeepSeek-R1, pushing forward the throughput-latency Pareto on Blackwell and making real-time inference with ultra-long-sequence practical.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 实时解码 并行策略 Token-to-Token Latency GPU效率
相关文章