MarkTechPost@AI 07月10日 18:12
A Coding Guide to Scaling Advanced Pandas Workflows with Modin
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文深入探讨了Modin,一个强大的Pandas替代品,它通过并行计算显著加速数据工作流程。通过导入modin.pandas as pd,可以将现有的Pandas代码转化为分布式计算的引擎。文章在Google Colab上,针对groupby、join、数据清洗和时间序列分析等常见数据操作,对Modin的性能进行了实际测试,并与标准Pandas库进行了基准测试,以评估Modin在速度和内存效率方面的优势。文章还提供了Modin的最佳实践,帮助用户更有效地利用Modin来处理大规模数据集。

🚀 Modin是一个旨在加速Pandas工作流程的库,通过并行计算来提升性能,只需简单替换import语句。

📊 文章使用真实世界的数据操作,如groupby、join、清洗和时间序列分析,在Google Colab上测试Modin的性能。

⏱️ 实验结果表明,Modin在速度上优于Pandas,尤其是在处理大规模数据集时,能够显著减少计算时间。

💡 文章提供了Modin的最佳实践,包括如何替换Pandas、Ray后端的使用、以及在需要时将Modin DataFrame转换为Pandas DataFrame的方法。

💾 除了速度提升,Modin在内存效率方面也表现出色,能够更有效地处理大型数据集。

In this tutorial, we delve into Modin, a powerful drop-in replacement for Pandas that leverages parallel computing to speed up data workflows significantly. By importing modin.pandas as pd, we transform our pandas code into a distributed computation powerhouse. Our goal here is to understand how Modin performs across real-world data operations, such as groupby, joins, cleaning, and time series analysis, all while running on Google Colab. We benchmark each task against the standard Pandas library to see how much faster and more memory-efficient Modin can be.

!pip install "modin[ray]" -qimport warningswarnings.filterwarnings('ignore')import numpy as npimport pandas as pdimport timeimport osfrom typing import Dict, Anyimport modin.pandas as mpdimport rayray.init(ignore_reinit_error=True, num_cpus=2)  print(f"Ray initialized with {ray.cluster_resources()}")

We begin by installing Modin with the Ray backend, which enables parallelized pandas operations seamlessly in Google Colab. We suppress unnecessary warnings to keep the output clean and clear. Then, we import all necessary libraries and initialize Ray with 2 CPUs, preparing our environment for distributed DataFrame processing.

def benchmark_operation(pandas_func, modin_func, data, operation_name: str) -> Dict[str, Any]:    """Compare pandas vs modin performance"""       start_time = time.time()    pandas_result = pandas_func(data['pandas'])    pandas_time = time.time() - start_time       start_time = time.time()    modin_result = modin_func(data['modin'])    modin_time = time.time() - start_time       speedup = pandas_time / modin_time if modin_time > 0 else float('inf')       print(f"\n{operation_name}:")    print(f"  Pandas: {pandas_time:.3f}s")    print(f"  Modin:  {modin_time:.3f}s")    print(f"  Speedup: {speedup:.2f}x")       return {        'operation': operation_name,        'pandas_time': pandas_time,        'modin_time': modin_time,        'speedup': speedup    }

We define a benchmark_operation function to compare the execution time of a specific task using both pandas and Modin. By running each operation and recording its duration, we calculate the speedup Modin offers. This provides us with a clear and measurable way to evaluate performance gains for each operation we test.

def create_large_dataset(rows: int = 1_000_000):    """Generate synthetic dataset for testing"""    np.random.seed(42)       data = {        'customer_id': np.random.randint(1, 50000, rows),        'transaction_amount': np.random.exponential(50, rows),        'category': np.random.choice(['Electronics', 'Clothing', 'Food', 'Books', 'Sports'], rows),        'region': np.random.choice(['North', 'South', 'East', 'West'], rows),        'date': pd.date_range('2020-01-01', periods=rows, freq='H'),        'is_weekend': np.random.choice([True, False], rows, p=[0.3, 0.7]),        'rating': np.random.uniform(1, 5, rows),        'quantity': np.random.poisson(3, rows) + 1,        'discount_rate': np.random.beta(2, 5, rows),        'age_group': np.random.choice(['18-25', '26-35', '36-45', '46-55', '55+'], rows)    }       pandas_df = pd.DataFrame(data)    modin_df = mpd.DataFrame(data)       print(f"Dataset created: {rows:,} rows × {len(data)} columns")    print(f"Memory usage: {pandas_df.memory_usage(deep=True).sum() / 1024**2:.1f} MB")       return {'pandas': pandas_df, 'modin': modin_df}dataset = create_large_dataset(500_000)  print("\n" + "="*60)print("ADVANCED MODIN OPERATIONS BENCHMARK")print("="*60)

We define a create_large_dataset function to generate a rich synthetic dataset with 500,000 rows that mimics real-world transactional data, including customer info, purchase patterns, and timestamps. We create both pandas and Modin versions of this dataset so we can benchmark them side by side. After generating the data, we display its dimensions and memory footprint, setting the stage for advanced Modin operations.

def complex_groupby(df):    return df.groupby(['category', 'region']).agg({        'transaction_amount': ['sum', 'mean', 'std', 'count'],        'rating': ['mean', 'min', 'max'],        'quantity': 'sum'    }).round(2)groupby_results = benchmark_operation(    complex_groupby, complex_groupby, dataset, "Complex GroupBy Aggregation")

We define a complex_groupby function to perform multi-level groupby operations on the dataset by grouping it by category and region. We then aggregate multiple columns using functions like sum, mean, standard deviation, and count. Finally, we benchmark this operation on both pandas and Modin to measure how much faster Modin executes such heavy groupby aggregations.

def advanced_cleaning(df):    df_clean = df.copy()       Q1 = df_clean['transaction_amount'].quantile(0.25)    Q3 = df_clean['transaction_amount'].quantile(0.75)    IQR = Q3 - Q1    df_clean = df_clean[        (df_clean['transaction_amount'] >= Q1 - 1.5 * IQR) &        (df_clean['transaction_amount'] <= Q3 + 1.5 * IQR)    ]       df_clean['transaction_score'] = (        df_clean['transaction_amount'] * df_clean['rating'] * df_clean['quantity']    )    df_clean['is_high_value'] = df_clean['transaction_amount'] > df_clean['transaction_amount'].median()       return df_cleancleaning_results = benchmark_operation(    advanced_cleaning, advanced_cleaning, dataset, "Advanced Data Cleaning")

We define the advanced_cleaning function to simulate a real-world data preprocessing pipeline. First, we remove outliers using the IQR method to ensure cleaner insights. Then, we perform feature engineering by creating a new metric called transaction_score and labeling high-value transactions. Finally, we benchmark this cleaning logic using both pandas and Modin to see how they handle complex transformations on large datasets.

def time_series_analysis(df):    df_ts = df.copy()    df_ts = df_ts.set_index('date')       daily_sum = df_ts.groupby(df_ts.index.date)['transaction_amount'].sum()    daily_mean = df_ts.groupby(df_ts.index.date)['transaction_amount'].mean()    daily_count = df_ts.groupby(df_ts.index.date)['transaction_amount'].count()    daily_rating = df_ts.groupby(df_ts.index.date)['rating'].mean()       daily_stats = type(df)({          'transaction_sum': daily_sum,        'transaction_mean': daily_mean,        'transaction_count': daily_count,        'rating_mean': daily_rating    })       daily_stats['rolling_mean_7d'] = daily_stats['transaction_sum'].rolling(window=7).mean()       return daily_statsts_results = benchmark_operation(    time_series_analysis, time_series_analysis, dataset, "Time Series Analysis")

We define the time_series_analysis function to explore daily trends by resampling transaction data over time. We set the date column as the index, compute daily aggregations like sum, mean, count, and average rating, and compile them into a new DataFrame. To capture longer-term patterns, we also add a 7-day rolling average. Finally, we benchmark this time series pipeline with both pandas and Modin to compare their efficiency on temporal data.

def create_lookup_data():    """Create lookup tables for joins"""    categories_data = {        'category': ['Electronics', 'Clothing', 'Food', 'Books', 'Sports'],        'commission_rate': [0.15, 0.20, 0.10, 0.12, 0.18],        'target_audience': ['Tech Enthusiasts', 'Fashion Forward', 'Food Lovers', 'Readers', 'Athletes']    }       regions_data = {        'region': ['North', 'South', 'East', 'West'],        'tax_rate': [0.08, 0.06, 0.09, 0.07],        'shipping_cost': [5.99, 4.99, 6.99, 5.49]    }       return {        'pandas': {            'categories': pd.DataFrame(categories_data),            'regions': pd.DataFrame(regions_data)        },        'modin': {            'categories': mpd.DataFrame(categories_data),            'regions': mpd.DataFrame(regions_data)        }    }lookup_data = create_lookup_data()

We define the create_lookup_data function to generate two reference tables: one for product categories and another for regions, each containing relevant metadata such as commission rates, tax rates, and shipping costs. We prepare these lookup tables in both pandas and Modin formats so we can later use them in join operations and benchmark their performance across both libraries.

def advanced_joins(df, lookup):    result = df.merge(lookup['categories'], on='category', how='left')    result = result.merge(lookup['regions'], on='region', how='left')       result['commission_amount'] = result['transaction_amount'] * result['commission_rate']    result['tax_amount'] = result['transaction_amount'] * result['tax_rate']    result['total_cost'] = result['transaction_amount'] + result['tax_amount'] + result['shipping_cost']       return resultjoin_results = benchmark_operation(    lambda df: advanced_joins(df, lookup_data['pandas']),    lambda df: advanced_joins(df, lookup_data['modin']),    dataset,    "Advanced Joins & Calculations")

We define the advanced_joins function to enrich our main dataset by merging it with category and region lookup tables. After performing the joins, we calculate additional fields, such as commission_amount, tax_amount, and total_cost, to simulate real-world financial calculations. Finally, we benchmark this entire join and computation pipeline using both pandas and Modin to evaluate how well Modin handles complex multi-step operations.

print("\n" + "="*60)print("MEMORY EFFICIENCY COMPARISON")print("="*60)def get_memory_usage(df, name):    """Get memory usage of dataframe"""    if hasattr(df, '_to_pandas'):        memory_mb = df.memory_usage(deep=True).sum() / 1024**2    else:        memory_mb = df.memory_usage(deep=True).sum() / 1024**2       print(f"{name} memory usage: {memory_mb:.1f} MB")    return memory_mbpandas_memory = get_memory_usage(dataset['pandas'], "Pandas")modin_memory = get_memory_usage(dataset['modin'], "Modin")

We now shift focus to memory usage and print a section header to highlight this comparison. In the get_memory_usage function, we calculate the memory footprint of both Pandas and Modin DataFrames using their internal memory_usage methods. We ensure compatibility with Modin by checking for the _to_pandas attribute. This helps us assess how efficiently Modin handles memory compared to pandas, especially with large datasets.

print("\n" + "="*60)print("PERFORMANCE SUMMARY")print("="*60)results = [groupby_results, cleaning_results, ts_results, join_results]avg_speedup = sum(r['speedup'] for r in results) / len(results)print(f"\nAverage Speedup: {avg_speedup:.2f}x")print(f"Best Operation: {max(results, key=lambda x: x['speedup'])['operation']} "      f"({max(results, key=lambda x: x['speedup'])['speedup']:.2f}x)")print("\nDetailed Results:")for result in results:    print(f"  {result['operation']}: {result['speedup']:.2f}x speedup")print("\n" + "="*60)print("MODIN BEST PRACTICES")print("="*60)best_practices = [    "1. Use 'import modin.pandas as pd' to replace pandas completely",    "2. Modin works best with operations on large datasets (>100MB)",    "3. Ray backend is most stable; Dask for distributed clusters",    "4. Some pandas functions may fall back to pandas automatically",    "5. Use .to_pandas() to convert Modin DataFrame to pandas when needed",    "6. Profile your specific workload - speedup varies by operation type",    "7. Modin excels at: groupby, join, apply, and large data I/O operations"]for tip in best_practices:    print(tip)ray.shutdown()print("\n Tutorial completed successfully!")print(" Modin is now ready to scale your pandas workflows!")

We conclude our tutorial by summarizing the performance benchmarks across all tested operations, calculating the average speedup that Modin achieved over pandas. We also highlight the best-performing operation, providing a clear view of where Modin excels most. Then, we share a set of best practices for using Modin effectively, including tips on compatibility, performance profiling, and conversion between pandas and Modin. Finally, we shut down Ray.

In conclusion, we’ve seen firsthand how Modin can supercharge our pandas workflows with minimal changes to our code. Whether it’s complex aggregations, time series analysis, or memory-intensive joins, Modin delivers scalable performance for everyday tasks, particularly on platforms like Google Colab. With the power of Ray under the hood and near-complete pandas API compatibility, Modin makes it effortless to work with larger datasets.


Check out the Codes. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter, and Youtube and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

The post A Coding Guide to Scaling Advanced Pandas Workflows with Modin appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Modin Pandas 数据分析 并行计算 性能优化
相关文章