cs.AI updates on arXiv.org 07月10日 12:06
Efficient Transfer Learning via Causal Bounds
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于结构因果模型和模糊集的迁移学习方法,通过优化模糊集上的因果效应,解决异构数据下的因果效应不可识别和估计偏差问题,并在合成基准测试中验证了其有效性。

arXiv:2308.03572v5 Announce Type: replace-cross Abstract: Transfer learning seeks to accelerate sequential decision-making by leveraging offline data from related agents. However, data from heterogeneous sources that differ in observed features, distributions, or unobserved confounders often render causal effects non-identifiable and bias naive estimators. We address this by forming ambiguity sets of structural causal models defined via integral constraints on their joint densities. Optimizing any causal effect over these sets leads to generally non-convex programs whose solutions tightly bound the range of possible effects under heterogeneity or confounding. To solve these programs efficiently, we develop a hit-and-run sampler that explores the entire ambiguity set and, when paired with a local optimization oracle, produces causal bound estimates that converge almost surely to the true limits. We further accommodate estimation error by relaxing the ambiguity set and exploit the Lipschitz continuity of causal effects to establish precise error propagation guarantees. These causal bounds are then embedded into bandit algorithms via arm elimination and truncated UCB indices, yielding optimal gap-dependent and minimax regret bounds. To handle estimation error, we also develop a safe algorithm for incorporating noisy causal bounds. In the contextual-bandit setting with function approximation, our method uses causal bounds to prune both the function class and the per-context action set, achieving matching upper and lower regret bounds with only logarithmic dependence on function-class complexity. Our analysis precisely characterizes when and how causal side-information accelerates online learning, and experiments on synthetic benchmarks confirm substantial regret reductions in data-scarce or confounded regimes.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

迁移学习 因果效应识别 异构数据 模糊集
相关文章