cs.AI updates on arXiv.org 07月10日 12:05
Surrogate Model for Heat Transfer Prediction in Impinging Jet Arrays using Dynamic Inlet/Outlet and Flow Rate Control
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本研究提出了一种基于CNN的代理模型,用于预测封闭射流阵列中的努塞尔数分布,通过训练数据和实验验证,模型在预测努塞尔数分布方面具有较高的准确性,为基于模型的温度控制提供基础。

arXiv:2507.07034v1 Announce Type: cross Abstract: This study presents a surrogate model designed to predict the Nusselt number distribution in an enclosed impinging jet arrays, where each jet function independently and where jets can be transformed from inlets to outlets, leading to a vast number of possible flow arrangements. While computational fluid dynamics (CFD) simulations can model heat transfer with high fidelity, their cost prohibits real-time application such as model-based temperature control. To address this, we generate a CNN-based surrogate model that can predict the Nusselt distribution in real time. We train it with data from implicit large eddy computational fluid dynamics simulations (Re < 2,000). We train two distinct models, one for a five by one array of jets (83 simulations) and one for a three by three array of jets (100 simulations). We introduce a method to extrapolate predictions to higher Reynolds numbers (Re < 10,000) using a correlation-based scaling. The surrogate models achieve high accuracy, with a normalized mean average error below 2% on validation data for the five by one surrogate model and 0.6% for the three by three surrogate model. Experimental validation confirms the model's predictive capabilities. This work provides a foundation for model-based control strategies in advanced thermal management applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

CNN模型 努塞尔数分布 射流阵列 热传递预测 模型控制
相关文章